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13.6 Linear Prediction and Linear Predictive
Coding

We begin with a very general formulation that will allow us to make connections
to various special cases. Lg§/,} be a set of measured values for some underlying
set of true values of a quantity, denoted{y,}, related to these true values by
the addition of random noise,

Yo = Yo + Na (13.6.9
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(compare equation 13.3.2, with a somewhat different notation). Our use of a Gree
subscript to index the members of the set is meant to indicate that the data point
are not necessarily equally spaced along a line, or even ordered: they might b
“random” points in three-dimensional space, for example. Now, suppose we want tos
construct the “best” estimate of the true value of some particular pqias a linear
combination of the known, noisy, values. Writing

Y = Zd*ay; + (13.6.2
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we want to find coefficientd,,, that minimize, in some way, thdiscrepancy x,.
The coefficientdl,, have a “star” subscript to indicate that they depend on the choice
of pointy,. Later, we might want to lej, be one of the existing,’s. In that case,
our problem becomes one of optimal filtering or estimation, closely related to the
discussion ir§13.3. On the other hand, we might want to be a completely new
point. In that case, our problem will be onelafear prediction.

A natural way to minimize the discrepangy is in the statistical mean square
sense. If angle brackets denote statistical averages, then wé,segkhat minimize

(a2) = <[z dea (Yo + 1) — y}>

=Y ((Yays) + (nanp))daadas — 2 Y (Yatia) dua + (42)
af «

(13.6.3
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Here we have used the fact that noise is uncorrelated with signal{we.gz) = 0.
The quantities(y,ys) and (y,y.) describe the autocorrelation structure of the
underlying data. We have already seen an analogous expression, (13.2.2), for thg
case of equally spaced data points on a line; we will meet correlation several time
againin its statistical sense in Chapters 14 and 15. The quaitities;) describe the
autocorrelation properties of the noise. Often, for point-to-point uncorrelated noise,
we have(nang) = (n2)dag. Itis convenient to think of the various correlation
guantities as comprising matrices and vectors,

Lormsino
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Pap = (Ya¥p) Dra = (YuYa) Nap = (nang) OF <ni> dap (13.64

Setting the derivative of equation (13.6.3) with respect todhg’'s equal to zero,
one readily obtains the set of linear equations,

> [bap + Masl dep = bua (13.6.5
B
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If we write the solution as a matrix inverse, then the estimation equation (13.6.2)
becomes, omitting the minimized discrepancy,

Yo Y bua [ + a5 U (13.6.6
af

From equations (13.6.3) and (13.6.5) one can also calculate the expected mean squg
value of the discrepancy at its minimum, denoted ) .,

<.§Ci> Z d*ﬁd)*ﬁ - y* Z d’*a d)‘u,z/ + nl"y]aﬁ (b*ﬂ (1363
af

A final general result tells how much the mean square discrepémf:y is
increased if we use the estimation equation (13.6.2) not with the best valyglsut

with some other valueg*@. The above equations then imply

(a2) — Z o — i) [Das + Nag) (dip — dsp) (13.6.8

Since the second term is a pure quadratic form, we see that the increase in th@
discrepancy is only second order in any error made in estimating ih's.
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Connection to Optimal Filtering

If we change “star” to a Greek index, saythen the above formulas describe
optimal filtering, generalizing the discussion{if3.3. One sees, for example, that
if the noise amplitudes, go to zero, so likewise do the noise autocorrelations
Nag. and, canceling a matrix times its inverse, equation (13.6.6) simply becomes
y, = y,. Another special case occurs if the matriges; andr.s are diagonal.
In that case, equation (13.6.6) becomes

¢’Y’Y /
— (13.6.9
Py 11y
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which is readily recognizable as equation (13.3.6) With— ¢.,.,, N2 — n,.,. What

is going on is this: For the case of equally spaced data points, and in the Fourieg
domain, autocorrelations become simply squares of Fourier amplitudes (Wiene
Khinchin theorem, equation 12.0.12), and the optimal filter can be constructe
algebraically, as equation (13.6.9), without inverting any matrix.

More generally, in the time domain, or any other domain, an optimal filter (one
that minimizes the square of the discrepancy from the underlying true value in th
presence of measurement noise) can be constructed by estimating the autocorrelatio
matrices¢.s andn.g, and applying equation (13.6.6) with — ~. (Equation
13.6.8 is in fact the basis for tHd 3.3’s statement that even crude optimal filtering
can be quite effective.)
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13.6 Linear Prediction and Linear Predictive Coding 559

Linear Prediction

Classicallinear prediction specializes to the case where the data points
are equally spaced along a ling;, i = 1,2,..., N, and we want to usé//
consecutive values of; to predict anM + 1st. Stationarity is assumed. That is, the
autocorrelatior{y,;yx) is assumed to depend only on the differefice k|, and not
onj or k individually, so that the autocorrelatignhas only a single index,

N—j
1
b = (YilYitj) = N=j Z YilYitj (13.6.10
=1

Here, the approximate equality shows one way to use the actual data set values
estimate the autocorrelation components. (In fact, there is a better way to make the
estimates; see below.) In the situation described, the estimation equation (13.6.2) i$

&R I%e:a‘o WOD" JU* MMM//:dny

M
Un =Y _diyn_j + Tn (13.6.11

Jj=1

(compare equation 13.5.1) and equation (13.6.5) becomes the/deg¢qbiations for
the M unknownd;’s, now called thdinear prediction (LP) coefficients,

M
S oyndi=dr  (k=1,...,M) (13.6.12
j=1

Notice that while noise is not explicitly included in the equations, it is properly
accounted forjf it is point-to-point uncorrelatedip(, as estimated by equation
(13.6.10) usingreasured valuesy/, actually estimates the diagonal partof, +1aq.,
above. The mean square discrepa(mﬁ) is estimated by equation (13.6.7) as

(22) = do — dp1d1 — pady — - - — dard (13.6.13

To use linear prediction, we first compute tigs, using equations (13.6.10)
and (13.6.12). We then calculate equation (13.6.13) or, more concretely, appl
(13.6.11) to the known record to get an idea of how large are the discrepancies
If the discrepancies are small, then we can continue applying (13.6.11) right on into:
the future, imagining the unknown “future” discrepanciesto be zero. In this
application, (13.6.11) is a kind of extrapolation formula. In many situations, this
extrapolation turns out to be vastly more powerful than any kind of simple polynomial
extrapolation. (By the way, you should not confuse the terms “linear prediction” and
“linear extrapolation”; the general functional form used by linear predictionuich
more complex than a straight line, or even a low-order polynomial!)

However, to achieve its full usefulness, linear prediction must be constrained in
one additional respect: One must take additional measures to guaraistelility.
Equation (13.6.11) is a special case of the general linear filter (13.5.1). The condition
that (13.6.11) be stable as a linear predictor is precisely that given in equations
(13.5.5) and (13.5.6), namely that the characteristic polynomial
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560 Chapter 13.  Fourier and Spectral Applications

have all N of its roots inside the unit circle,
2| <1 (13.6.15

There is no guarantee that the coefficients produced by equation (13.6.12) will have
this property. If the data contain many oscillations without any particular trend
towards increasing or decreasing amplitude, then the complex roots of (13.6.14§
will generally all be rather close to the unit circle. The finite length of the data
set will cause some of these roots to be inside the unit circle, others outside. |
some applications, where the resulting instabilities are slowly growing and the linear:
prediction is not pushed too far, it is best to use the “unmassaged” LP coefficient:
that come directly out of (13.6.12). For example, one might be extrapolating to fill a
short gap in a data set; then one might extrapolate both forwards across the gap an
backwards from the data beyond the gap. If the two extrapolations agree tolerablys
well, then instability is not a problem.

When instabilityis a problem, you have to “massage” the LP coefficients. You
do this by (i) solving (numerically) equation (13.6.14) for N\scomplex roots; (ii)
moving the roots to where you think they ought to be inside or on the unit circle; (iii)
reconstituting the now-modified LP coefficients. You may think that step (ii) sounds
a little vague. It is. There is no “best” procedure. If you think that your signal
is truly a sum of undamped sine and cosine waves (perhaps with incommensura
periods), then you will want simply to move each ragtonto the unit circle,
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In other circumstances it may seem appropriate to reflect a bad root across thé
unit circle
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This alternative has the property that it preserves the amplitude of the output o
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(13.6.11) when it is driven by a sinusoidal setaofs. It assumes that (13.6.12) %’
has correctly identified the spectral width of a resonance, but only slipped up ongg
identifying its time sense so that signals that should be damped as time proceeds eriflg
up growing in amplitude. The choice between (13.6.16) and (13.6.17) sometlmeégf%
might as well be based on voodoo. We prefer (13.6.17). 5%
Also magical is the choice af/, the number of LP coefficients to use. You i%
should choosé/ to be as small as works for you, that is, you should choose it by & 2
experimenting with your data. Try/ = 5,10, 20, 40. If you need large\/’s than g;
this, be aware that the procedure of “massaging” all those complex roots is qui tez =
sensitive to roundoff error. Use double precision. £g8
Linear prediction is especially successful at extrapolating signals that are smooth & 3

and oscillatory, though not necessarily periodic. In such cases, linear prediction often
extrapolates accurately througiany cycles of the signal. By contrast, polynomial
extrapolation in general becomes seriously inaccurate after at most a cycle or two.
A prototypical example of a signal that can successfully be linearly predicted is the
height of ocean tides, for which the fundamental 12-hour period is modulated in
phase and amplitude over the course of the month and year, and for which local
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hydrodynamic effects may make even one cycle of the curve look rather different

in shape from a sine wave.

We already remarked that equation (13.6.10) is not necessarily the best way

to estimate the covariances, from the data set. In fact, results obtained from
linear prediction are remarkably sensitive to exactly how ¢hés are estimated.
One particularly good method is due to BUtf and involves a recursive procedure
for increasing the orded by one unit at a time, at each stage re-estimating the
coefficientsd;, j = 1,..., M so as to minimize the residual in equation (13.6.13).
Although further discussion of the Burg method is beyond our scope here, the metho
is implemented in the following routinig.2] for estimating the LP coefficienis;

of a data set.

SUBROUTINE memcof (data,n,m,xms,d)
INTEGER m,n,MMAX,NMAX
REAL xms,d(m),data(n)
PARAMETER (MMAX=60,NMAX=2000)
Given a real vector of data(1:n), and given m, this routine returns m linear prediction
coefficients as d(1:m), and returns the mean square discrepancy as xms.
INTEGER i,j,k
REAL denom,p,pneum,wkl (NMAX) ,wk2(NMAX) ,wkm(MMAX)
if (m.gt.MMAX.or.n.gt.NMAX) pause ’workspace too small in memcof’
p=0.
do1 j=1,n
p=p+data(j)**2
enddo 11
xms=p/n
wk1(1)=data(1l)
wk2(n-1)=data(n)
do12 j=2,n-1
wkl(j)=data(j)
wk2(j-1)=data(j)
enddo 12
do 17 k=1,m
pneum=0.
denom=0.
do13 j=1,n-k
pneum=pneum+wk1 (j)*wk2(j)
denom=denom+wk1 (j) **2+wk2(j) **2
enddo 13
d(k)=2.*pneum/denom
xms=xms* (1.-d (k) **2)
do 14 i=1,k-1
d(i)=wkm(i)-d(k)*wkm(k-i)
enddo 14
The algorithm is recursive, building up the answer for larger and larger values of m until
the desired value is reached. At this point in the algorithm, one could return the vector
d and scalar xms for a set of LP coefficients with k (rather than m) terms.
if(k.eq.m)return
do 15 i=1,k
wkm (1)=d (i)
enddo 15
do1s j=1,n-k-1
wk1(j)=wk1(j)-wkm(k)*wk2(j)
wk2 (j)=wk2(j+1) -wkm (k) *wki (j+1)
enddo 16
enddo 17
pause ’never get here in memcof’
END
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562 Chapter 13.  Fourier and Spectral Applications

Here are procedures for rendering the LP coefficients stable (if you choose to

do so), and for extrapolating a data set by linear prediction, using the original or
massaged LP coefficients. The routineoots (§9.5) is used to find all complex

roots of a polynomial.

SUBROUTINE fixrts(d,m)

INTEGER m,MMAX

REAL d(m)

PARAMETER (MMAX=100)

USES zroots
Given the LP coefficients d(1:m), this routine finds all roots of the characteristic polynomial
(13.6.14), reflects any roots that are outside the unit circle back inside, and then returns
a modified set of coefficients d(1:m).

INTEGER 1i,j

LOGICAL polish

COMPLEX a(MMAX) ,roots(MMAX)

a(m+1)=cmplx(1.,0.)

dou j=m,1,-1
a(j)=cmplx(-d(m+1-3),0.)

enddo 11

polish=.true.

Largest expected value of m.

Set up complex coefficients for polynomial root finder.

call zroots(a,m,roots,polish)
do12 j=1,m
if (abs(roots(j)).gt.1.)then
roots(j)=1./conjg(roots(j))

Find all the roots.

Look for a...

root outside the unit circle,
and reflect it back inside.

endif

enddo 12

a(1)=-roots(1)

a(2)=cmplx(1.,0.)

do14 j=2,m
a(j+1)=cmplx(1.,0.)
do 13 i=j,2,-1 and synthetically multiplying.

a(i)=a(i-1)-roots(j)*a(i)

Now reconstruct the polynomial coefficients,

by looping over the roots

enddo 13
a(1)=-roots(j)*a(l)
enddo 14
do1s j=1,m The polynomial coefficients are guaranteed to be real,
d(m+1-j)=-real(a(j)) so we need only return the real part as new LP coefficients.
enddo 15
return
END

SUBROUTINE predic(data,ndata,d,m,future,nfut)
INTEGER ndata,nfut,m,MMAX
REAL d(m),data(ndata),future(nfut)
PARAMETER (MMAX=100)
Given data(1l:ndata), and given the data's LP coefficients d(1:m), this routine applies
equation (13.6.11) to predict the next nfut data points, which it returns in the array
future(1:nfut). Note that the routine references only the last m values of data, as
initial values for the prediction.
Parameter: MMAX is the largest expected value of m.
INTEGER j,k
REAL discrp,sum,reg(MMAX)
do1 j=1,m
reg(j)=data(ndata+i-j)
enddo 11
do 14 j=1,nfut
discrp=0.
sum=discrp
do 12 k=1,m

This is where you would put in a known discrepancy if you
were reconstructing a function by linear predictive coding
rather than extrapolating a function by linear prediction.
See text.
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13.6 Linear Prediction and Linear Predictive Coding 563

sum=sum+d (k) *reg (k)

enddo 12

do 13 k=m,2,-1 [If you want to implement circular arrays, you can avoid this
reg(k)=reg(k-1) shifting of coefficients!]

enddo 13

reg(1)=sum
future(j)=sum
enddo 14
return
END

Removing the Bias in Linear Prediction

You might expect that the sum of th&’s in equation (13.6.11) (or, more
generally, in equation 13.6.2) should be 1, so that (e.g.) adding a constant to all th
data pointgy; yields a prediction that is increased by the same constant. Howeve
thed;’s do not sum to 1 but, in general, to a value slightly less than one. This fac
reveals a subtle point, that the estimator of classical linear prediction isbiatsed,
even though it does minimize the mean square discrepancy. At any place where th
measured autocorrelation does not imply a better estimate, the equations of line
prediction tend to predict a value that tends towards zero.

Sometimes, that is just what you want. If the process that generategs’'she
in fact has zero mean, then zero is the best guess absent other information.
other times, however, this behavior is unwarranted. If you have data that show:
only small variations around a positive value, you don’'t want linear predictions
that droop towards zero.

Often it is a workable approximation to subtract the mean off your data set,
perform the linear prediction, and then add the mean back. This procedure contain
the germ of the correct solution; but the simple arithmetic mean is not quite thes
correct constant to subtract. In fact, an unbiased estimator is obtained by subtractin
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With this subtraction, the sum of the LP coefficients should be unity, up to roundoff§
and differences in how the,’s are estimated. 0
Linear Predictive Coding (LPC) i
o

A different, though related, method to which the formalism above can be g
applied is the “compression” of a sampled signal so that it can be stored moreg
compactly. The original form should exactly recoverable from the compressed &

version. Obviously, compression can be accomplished only if there is redundancy
in the signal. Equation (13.6.11) describes one kind of redundancy: It says that
the signal, except for a small discrepancy, is predictable from its previous values
and from a small number of LP coefficients. Compression of a signal by the use of
(13.6.11) is thus calletinear predictive coding, or LPC.

The basic idea of LPC (in its simplest form) is to record as a compressed file (i)
the number of LP coefficientd!, (ii) their M values, e.g., as obtained hgmcof,
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564 Chapter 13.  Fourier and Spectral Applications

(iii) the first M data points, and then (iv) for each subsequent data point only its
residual discrepancy; (equation 13.6.1). When you are creating the compressed
file, you find the residual by applying (13.6.1) to the previddigoints, subtracting

the sum from the actual value of the current point. When you are reconstructing the
original file, you add the residual back in, at the point indicated in the roptiaéic.

It may not be obvious why there is any compression at all in this scheme. After
all, we are storing one value of residual per data point! Why not just store the original
data point? The answer depends on the relative sizes of the numbers involved. Th
residual is obtained by subtracting two very nearly equal numbers (the data and th
linear prediction). Therefore, the discrepancy typically has only a very small numberg
of nonzero bits. These can be stored in a compressed file. How do you do it in & £
high-level language? Here is one way: Scale your data to have integer values, say 5
betweert-1000000 and—1000000 (supposing that you need six significant figures).
Modify equation (13.6.1) by enclosing the sum term in an “integer part of” operator.
The discrepancy will now, by definition, be an integer. Experiment with different
values ofM, to find LP coefficients that make the range of the discrepancy as small
as you can. If you can get to within a rangetof27 (and in our experience this is not
at all difficult) then you can write it to a file as a single byte. This is a compression
factor of 4, compared to 4-byte integer or floating formats.

Notice that the LP coefficients are computed usingdimmntized data, and that
the discrepancy is also quantized, i.e., quantization is done both outside and insid
the LPC loop. If you are careful in following this prescription, then, apart from the
initial quantization of the data, you will not introduce even a single bit of roundoff
error into the compression-reconstruction process: While the evaluation of the su
in (13.6.11) may have roundoff errors, the residual that you store is the value which
when added back to the sum, givesactly the original (quantized) data value. Notice
also that you do not need to massage the LP coefficients for stability; by adding th
residual back in to each point, you never depart from the original data, so instabilities:
cannot grow. There is therefore no need fakrts, above.

Look at§20.4 to learn aboutiuffman coding, which will further compress the
residuals by taking advantage of the fact that smaller values of discrepancy will occu
more often than larger values. A very primitive version of Huffman coding would
be this: If most of the discrepancies are in the ra#gd@7, but an occasional one is
outside, then reserve the value 127 to mean “out of range,” and then record on the fil
(immediately following the 127) a full-word value of the out-of-range discrepancy.
§20.4 explains how to do much better.

There are many variant procedures that all fall under the rubric of LPC.

o If the spectral character of the data is time-variable, then it is best not
to use a single set of LP coefficients for the whole data set, but rather
to partition the data into segments, computing and storing different LP
coefficients for each segment.

o If the data are really well characterized by their LP coefficients, and you
can tolerate some small amount of error, then don'’t bother storing all of the
residuals. Just do linear prediction until you are outside of tolerances, then
reinitialize (usingM sequential stored residuals) and continue predicting.

e In some applications, most notably speech synthesis, one cares only about
the spectral content of the reconstructed signal, not the relative phases.
In this case, one need not store any starting values at all, but only the
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LP coefficients for each segment of the data. The output is reconstructed
by driving these coefficients with initial conditions consisting of all zeros
except for one nonzero spike. A speech synthesizer chip may have of
order 10 LP coefficients, which change perhaps 20 to 50 times per second.
e Some people believe that it is interesting to analyze a signal by LPC, even
when the residuals; arenot small. Thex;’s are then interpreted as the
underlying “input signal” which, when filtered through the all-poles filter
defined by the LP coefficients (sé&3.7), produces the observed “output
signal.” LPC reveals simultaneously, it is said, the nature of the fiidr
the particular input that is driving it. We are skeptical of these applications;
the literature, however, is full of extravagant claims.
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Of course, (13.7.2) is not thteue power spectrum of the underlying functie(t), but only an
estimate. We can see in two related ways why the estimate is not likely to be exact. First, inth
time domain, the estimate is based on only a finite range of the fungtpmwhich may, for all

we know, have continued from= —oo to co. Second, in the-plane of equation (13.7.2), the
finite Laurent series offers, in general, only an approximation to a general analytic function of
z. In fact, a formal expression for representing “true” power spectra (up to normalization) is

oo 2
2 : k
Ckz

k=—o0

13.7 Power Spectrum Estimation by the
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Maximum Entropy (All Poles) Method 2

8

The FFT is not the only way to estimate the power spectrum of a process, nor is iti
necessarily the best way for all purposes. To see how one might devise another metho@,
let us enlarge our view for a moment, so that it includes not only real frequencies in theg
Nyquist interval—f. < f < f., but also the entire complex frequency plane. From that %
vantage point, let us transform the complgplane to a new plane, called tlzdéransform 3
plane or z-plane, by the relation ©
. Q

z = 2 A (13.7.3 Er

whereA is, as usual, the sampling interval in the time domain. Notice that the Nyquist mterval%
on the real axis of th¢-plane maps one-to-one onto the unit circle in the complpiane. e
If we now compare (13.7.1) to equations (13.4.4) and (13.4.6), we see that the FF‘I%
power spectrum estimate (13.4.5) for any real sampled funetica c(tx) can be written, g
except for normalization convention, as 3
=z

N/2-1 2 S

_ k ~

P(fy=| > oz (13.7.2 >

k=—N/2 g

g

e
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